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In 2021, BMW launched a quantum computing challenged so solve a set of problems relevant
for the automotive life cycle (BMW challenge web-page). The challenge consists of a set of 4
problems concerning design to operation of automobiles. This work addresses the 1st problem.
The formulation exploits an Ising Hamiltonian, with the solution relying on quantum quadratic
programming. Runtime and complexity analysis is performed, scalability is discussed, which is
shown to be polynomial for the problem at hand.

I. INTRODUCTION

Quantum computing is a promising paradigm which
bares great potential in both industry and academia.
Quantum algorithms address optimization [1, 2],
database search [3], cryptography [4], and satisfiability
problems [5]. Recently, it has been gaining momentum
with industrial applications, such as traffic flow [6], air-
craft load [7], logistics [8], and medical diagnosis [9].

The challenge launched by BMW [10] focuses on 4
problems related to the life cycle of an automobile. The
general requirements the challenge are to develop a suit-
able algorithm implementable on a quantum computer
for each problem. Also, the algorithm should be tested
on a quantum computer in the cloud, and finally as-
sessed in terms of the performance at scale.

This work considers the 1st BMW problem [11]: the
sensor position optimization (SPO) problem. Ensur-
ing robust sensor placement is a critical task when it
comes to advance autonomous ground vehicle naviga-
tion (GVN). Sensors such as automotive cameras, radar,
or lidar, are highly complex systems and hence are large
cost factors. While optimizing robust sensor placement
promotes save autonomous GVN their use are subjected
to certain constraints: Optimal coverage of the vehicle’s
surroundings, redundant coverage in specific areas, and
minimal costs.

Instead of developing a completely new algorithm for
future quantum computers, I present a formalization of
the SPO problem using Quadratic Programming (QP)
[12]. The formulation I consider here covers all require-
ments of the SPO statement and leads to an IP problem
involving binary variables only and having two objec-
tive functions to be minimized.

The binary IP (BP) problem is one of Karp’s 21 NP-
complete problems [13]. Commercial solvers developed
to solve IP such as CPLEX [14], FICO [15], and Gurobi
[16] fail when problem complexity becomes too high, re-
quiring specialized solvers that are adapted to the spe-
cific problem at hand. However, applying any of these
solvers to a BP problems such as the one proposed by
BMW shows exponential blow-up for relatively small
instances.

This project aims to find the optimal and most cost-
effective sensor configuration by optimizing the cover-
age of the region of interest at a minimal price. First,
a set of sensor candidates will be generated. Second,

the problem will be mapped to a modification of the
exact cover problem. Finally, it will be formulated as
an Ising Hamiltonian to use with a quantum variational
eigensolver.

II. BMW SENSOR POSITION OPTIMIZATION
PROBLEM

The SPO problem is sketched in Figure 1. Following
the problem statement, we need to optimize the place-
ment of N sensors, a subset of a maximum number of
allowed sensors K. Each sensor Si where i ∈ {0, . . . , N}
is described by a triple (Ti, Pi, Oi) where Ti is the char-
acteristic of the sensor, Pi is the position in cartesian
coordinates, and Oi is the orientation in angular coor-
dinates.

The sensor characteristic Ti is a triple (ti, fovi, pi)
where ti describes the numbered type of the sensor, with
0 → lidar, 1 → radar, 2 → camera, and 3 → ultrasonic.
The field of view fovi is given as vertical and horizontal
radial angles, and a range (θ, ϕ, d). Finally, pi is the
price of the sensor, given as a real number.

The problem requires minimizing the cost and max-
imizing the coverage of certain points of interest such
that:

(A) The sensors must be positioned on designated sur-
faces on the vehicle,

(B) sensors should not be oriented towards the interior
of the vehicle,

(C) the number of sensors does not exceed a maximum
sensor count of K,

(D) all regions of interest are covered by their corre-
sponding sensor types,

(E) points of interest above a certain criticality
threshold are covered twice, and

(F) cost of the sensor configuration is minimal.

Constraints (A), (B), and (D) are sketched in Fig-
ure 1. For constraint (A), the allowed sensor positions
are given as rectangles characterized by their corners;
together with the allowed sensor types; Lidar, camera,
ultrasound, and/or radar.

https://www.press.bmwgroup.com/global/article/detail/T0337884EN/quantum-computing:-bmw-group-launches-“quantum-computing-challenge”-in-collaboration-with-aws-to-crowd-source-innovation?language=en
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FIG. 1. Simplified sketch of the BMW Sensor Position Optimization problem. The car is to be equipped with sensors of
different position, field of view, angle, and type. The total number of sensors is variable. For this SPO, 5 different sensor
types are considered, as shown in the legend. The total cost of the sensor configuration should be minimal. All points of
interest, marked by cuboids and spherical sectors (dotted lines), must be covered by sensors of a specific type.

Constraint (B) is defined by an occlusion geometry,
a polygonal approximation of the shape of the car.

The constraint (C) does not require additional ex-
planation. In (D), the regions of interest are given as
cuboids and sectors. The cuboids are assigned critical-
ity parameters, operation type (position, speed, and/or
image), and environment type (urban, rural, and/or
highway). The sectors, given as spherical segments are
assigned the same parameters as the cuboids.

Finally, (E) is given as a critically grid: a discretized
sample of the regions of interest, given as cartesian co-
ordinates and a criticality value between 0 and 1.

For a given configuration of sensors, a matrix of re-
gion of interest points R, and a matrix of Boolean vari-
ables B that express coverage, the overall coverage is
evaluated as

vcoverage =

∑
i,j,k ri,j,k · bi,j,k∑

i,j,k ri,j,k
(1)

where i, j, k are indices to coordinates in 3D space,
ri,j,k is the point of interest at this index, and bi,j,k
is the is 1 if the corresponding point is covered and 0
otherwise.

Therefore, the complete optimization problem can be
given as:

argmin
T,P,O

(−w1 · vcoverage + w2 · C) (2)

where w1, w2 are positive weights and C =
∑

i pi is
overall the cost of the sensor configuration.

III. QUADRATIC PROGRAMMING
FORMULATION

The natural way of mathematically expressing the
problem introduced in Section II is using a quadratic
program [12].

The problem formulation does not specify the con-
crete sensors to be considered. Therefore, we begin
by assuming certain predefined sensors. We take these
from real-world sensor specifications of sensors that are
currently on the market, manufactured by Bosch [17]
and Livox [18], yielding the base sensors given in Ta-
ble I.

Next, for the placement of the sensors (A), we iden-
tify positions on the surface of the vehicle. For this
purpose, we uniformly sample points characterized by
the allowed sensor position data. This gives us a set of
possible sensor positions.

Third, the orientation of the sensors is identified by
sampling angles that cover the half-sphere relative to
the plane normal, satisfying constraint (B).

Finally, the sensor specification, position, and angles
are used to determine a set of K (satisfying constraint
(C)) sensor candidates, which w denoted as S From this
set we wish to take the sensors that are optimal in terms
of coverage and cost.

Constraint (D), which reflects sensor coverage, is
modeled using set theory: The set of critical points is
described by tuples

U =
{
(i,xi, ci)

∣∣ 1 ≤ i ≤ n,xi ∈ R3, ci ∈ (0, 1]
}

(3)
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Type Vertical angle θ [rad] Horizontal angle ϕ [rad] Range d [mm] Price [USD]

Lidar 38.4 · π
180

98.4 · π
180

90 · 1000 1500.00
Radar (short range) 80 · π

180
80 · π

180
30 · 1000 200.00

Radar (long-range) 6 · π
180

3 · π
180

210 · 1000 200.00
Camera 58 · π

180
50 · π

180
500 · 1000 3000.00

Ultrasonic 35 · π
180

70 · π
180

5.5 · 1000 60.00

TABLE I. List of base sensors considered for the SPO problem. The sensor specifications (field of view angels and range)
and prices have been taken from products by Bosch [17] and Livox [18].

for which i is the identification number, xi the carte-
sian coordinates, and ci the criticality value.

Adapting [19], it can be assumed without loss of gen-
erality that the union of all configurations covers the
complete set of critical points, i.e.

U =
⋃
i

Vi (4)

where Vi ⊂ U is the set of points covered by sensor
Si ∈ S.

The target now is to find a subset of the sets {Vi},
called R, such that the pairwise intersection of the sets
in R is minimal, with maximal coverage of U . Addi-
tionally, points in U with a criticality value higher than
ξ = 0.7 should be covered twice, and the cost for R
should be minimal.

IV. QUANTUM OPTIMIZATION APPROACH

The quantum optimization approach to QP problems
is based on adiabatic quantum optimization (AQO) [1]
and the concept of a quantum Hamiltonian: we are
given a quantum Hamiltonian HP whose ground state
encodes the solution to a problem of interest, and an-
other Hamiltonian H0, whose ground state is easy to
find and to prepare in an experimental setup.

We prepare a quantum system with a ground state of
H0. Then, the Hamiltonian for a time T is adiabatically
changed according to

H(t) =

(
1− t

T

)
H0 +

t

T
HP. (5)

Then, for a large enough value of T , and non-
commuting H0 and HP, the quantum system remains in
the ground state for all times according to the adiabatic
theorem of quantum mechanics. Measuring the quan-
tum state at time T returns a solution to the problem.

As a first step, we consider only constraint (D) which
only requires covering every point of interest exactly
once. This constraint is equivalent to the exact cover
and can be formulated as follows [19]:

HA = A

n∑
α=1

(
1−

∑
i:α∈Vi

xi

)
(6)

where α denotes the elements of U , with i referring to
the subset Vi. HA = 0 precisely when every element is
included exactly one time, which implies that the unions
are disjoint. The existence of a ground state of energy
H = 0 corresponds to the existence of a solution to the
exact cover problem.

Now, to include both constraints (D) and (E), the the
Ising Hamiltonian is modified:

HA = A

n∑
α=1

(1−∑
i:α∈Vi

xi

)2
+

1−
∑

i:α∈Vi∧pi>ξ

xi

2
 . (7)

The ground state of HA = 0 is reached when every
point in U is covered exactly once, except critical points,
which are covered exactly twice. If no such state exists,
HA is minimal when the number of superfluous as well
as missing points is minimal. It is possible that there
are multiple solutions.

Extending this to include the cover with smallest
price is done by adding a second energy scale: H =
HA +HB such that

HB = B
∑
i

xi · pi. (8)

V. ANALYSIS AND RESULTS

Classically, the sensor placement problem is solved
using linear programming [20]. Because this is an NP-
complete problem, evaluating each sensor configuration
has exponential runtime, with complexity O(2N ), where
N is the number of sensor candidates.

In the quantum domain, a variational quantum eigen-
solver can be used, needing only n qubits (where n is the
number of points of interest), with polynomial runtime.

VI. CONCLUSION

Classical solutions that optimize sensor placement for
self-driving cars compromise an optimal solution for
technical feasibility. Due to the speedup provided by
quantum computers, it becomes possible to find the
truly optimal solution while promising feasible run-
times.
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In summary, I have shown how to employ a quantum
optimization to tackle the 1st BMW quantum problem
efficiently. For solving the 1st BMW problem, which is
a sensor placement optimization problem, a QP prob-
lem has been formulated that includes all constraints

required by BMW. The solution uses an Ising Hamilto-
nian representation for the problem and solves it using
adiabatic quantum optimization. Future work includes
moving the problem formulation to real quantum hard-
ware.
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